The Cornell Caltech Atacama Telescope

2007 January 18

NRAO – UVa

Riccardo Giovanelli Director
Thomas A. Sebring Project Manager
Simon Radford Deputy Project Manager
Jonas Zmuidzinas Project Scientist, Caltech
Terry Herter Project Scientist, Cornell
Paul Goldsmith JPL Group Leader
CCAT Science Committee

- Co-Chairs
 - Terry Herter (Cornell) and Jonas Zmuidzinas (CIT)

- Theme
 - Distant Galaxies
 - Sunyaev-Zeldovich Effect
 - Local galaxies
 - Galactic Center
 - Cold Cloud Cores Survey
 - Interstellar Medium
 - Circumstellar Disks
 - Kuiper Belt Objects

- Lead
 - Andrew Blain (CIT)
 - Sunil Golwala (CIT)
 - Gordon Stacey (Cornell)
 + Shardha Jogee (UT)
 - Darren Dowell (JPL/CIT)
 - Paul Goldsmith (JPL)
 + Neal Evans (UT)
 - Jonas Zmuidzinas (CIT)
 - Darren Dowell (JPL/CIT)
 - Jean-Luc Margot (Cornell)

- Ex-officio
 - Riccardo Giovanelli (Cornell), Simon Radford (CIT)

More details in CCAT Feasibility Concept Study Report
www.submm.org
Why CCAT?

CCAT
25 m, 10 μm rms
Cerro Chajnantor
CCAT Science Strengths

- Past decade: submillimeter astronomy is important!!
- **CCAT:**
 - Is larger, more sensitive
 - Is designed specifically for wide-field imaging
 - Has wide spectral coverage
 - Is *excellent* at 350 μm
 - site, surface
 - Has 4” resolution @ 350 μm
 - Will give multicolor information (SED)
 - Will study high z tail of CIB
- **CCAT will complement ALMA**
 - Fast mapping vs. high angular & spectral resolution
 - Comparable sensitivities: targets for ALMA
- **Clusters (SZ), submm galaxies, star-forming regions & cores, debris disks, KBOs**
Images of the Antennae (NGC 4038/4039) in the visible (left), infrared (center), and submillimeter (right) showing how the submillimeter reveals regions hidden at shorter wavelengths. For this galaxy and many like it, the submillimeter represents the bulk of the energy output of the galaxy and reveals the real luminosity production regions that are otherwise hidden. CCAT will have 2.5 times better resolution in the submillimeter giving a spatial resolution like that of the infrared image (center). Visible: HST; Infrared: Spitzer; and 350 μm submillimeter: CSO/SHARC II, Dowell et al.
Sources with peak emission in the far-infrared and submillimeter: a $10^{12} \, L_\odot$ starburst galaxy at $z = 1$, 2, and 4; a $T = 8 \, \text{K}$, $0.03 \, M_\odot$ cold cloud core in a nearby (140 pc) star forming region; and a 300 km diameter Kuiper Belt Object at 40 AU. The 5 σ, 30 beams source$^{-1}$ confusion limit is shown for CCAT.
Red bars show bandpass average transmissions for 0.25 mm PWV.
Sensitivities of CCAT and other instruments (5 σ in 1 hour) with confusion limits (30 beams source$^{-1}$). CCAT sensitivities computed for precipitable water vapor appropriate to that band.
Submm Galaxy Detection Rate

- CCAT is an ultrafast mapper
- Assumptions
 - 32 x 32 (1024) pixel detector, Nyquist sampled, 350 μm & 850 μm
 - Observationally verified counts (good to factor 2)
 - Confusion and all sky limits
- 350 μm & 850 μm detection rates are compatible, but
- Confusion at 350 μm is deeper than at 850 μm
- Detection rates:
 - ~150 × SCUBA2; ~300 × ALMA
 - About 100-6000 per hour
 - Lifetime detection of order 10^{7-8} galaxies: ~1% of ALL galaxies!
- '1/3 sky survey': ~1000 deg2 at 3 deg2hr$^{-1}$ in 5000 hr
Submm Galaxy Models

Can the faint sub-mm galaxies be explained in the ΛCDM model?

C. M. Baugh¹, C. G. Lacey¹, C. S. Frenk¹, G. L. Granato², L. Silva³, A. Bressan², A. J. Benson⁴, S. Cole¹.

- Semianalytical model
- CDM halo “merger tree”
- Gas cooling, star formation, feedback, ...
- Treat chemical evolution, dust production, dust radiative transfer
- Includes galaxy mergers & starbursts
- Number counts OK
- Submm galaxies dominated by mergers
Submm Galaxy Models

- Original model, pre-submm
- Tuned to match local galaxies...
- ...but severely underpredicts submm galaxies!
- Fixes:
 - Slower star formation in disks
 - Minor mergers lead to starbursts
 - Use flat IMF for starbursts (high mass)
- Metallicity OK for cluster gas, ellipticals
 - Nagashima et al., 2005
Submm Galaxy Models

Star formation at $z > 3.5$ dominated by bursts?
Submm Galaxy Models

- Investigate $z > 4$ tail with CCAT
- Use 850 μm detections that are 350/450 μm dropouts?
Why 350 μm?

Star Formation Sensitivity

SFR (M_{\odot}/yr/beam) vs. Redshift

- Spitzer(70)
- CCAT(200)
- SCUBA 2
- CCAT(350)
- CCAT(450)
- CCAT(560)
- CCAT(620)
- CCAT(740)
- CCAT(870)
- LMT(1100)
- Spitzer(24)

Sensitivity to star formation rate vs. redshift for an Arp 220 like galaxy. All flux limits are set by the confusion limit except for CCAT(200) which is 5 σ in 10^4 sec. The conversion used is $2 M_{\odot}$/yr = $10^{10} L_{\odot}$ & $L_{\text{Arp220}} = 1.3 \times 10^{12} L_{\odot}$.
Why 350 μm?

- CCAT
- SCUBA, MAMBO
- SMGs at z~3
- Spitzer/MIPS 24 μm
- Spitzer/IRAC
- Lagache et al. (2004)

Flux (mJy)

Rest wavelength (microns)
Submm Galaxies with CCAT

- Submm galaxies are mostly mergers?
 - Black hole growth is due to mergers? (Malbon 2006)
- Determine number counts to much higher precision and 10x fainter
 - Are faint submm galaxies mostly quiescent?
- Measure SED from 0.3 to 1 mm
 - Measure luminosity for z > 2 (50% or more of SMGs)
 - Look for spectral index variations?
- Determine luminosity function vs. z
- Clustering vs. z?
 - Need redshifts
 - 3.5 σ detection by Blain et al. (2004) using Keck redshifts
 - Sensitive to halo mass
 - Also depends on lifetime of submm bright phase?
 - Need predictions from galaxy formation models (A. Benson)
- Find z > 5 objects? Need model predictions.
Star Formation:
Prestellar core mass function

(Cold cloud core survey, Evans & Goldsmith)

The Core Mass Function \(\text{CMF} = N_{\text{core}}(M_{\text{core}}) \)

is central for a number of key questions in star formation theory

- What is the relationship between the CMF and the stellar IMF?
- Do individual cores collapse to form individual stars?
- What is the role of the environment?
- Where and when does fragmentation take place?
Cores in Orion1 Region
(Li, Goldsmith, et al.; CSO/Sharc II)

Enhanced angular resolution ESSENTIAL to determine core size and mass

Cores identified with COREFIND algorithm
51 cores identified

Mass determined from standard dust properties and dust temperatures inferred from NH$_3$ measurements of gas temperature

Determining core mass function is challenging

Limited sample size makes use of differential mass function $N(M)$ difficult

Cumulative mass function $N(>M)$ is an attractive approach, but serious errors can result from fitting power laws
Status and role of CCAT

- Mass range: 0.1 M_\odot to 50 M_\odot
- The core mass function is described by a single power law: $N(M) \sim M^{-0.8}$, very different from stellar IMF
- This type of study requires best possible resolution, and LARGE CORE SAMPLES to determine the effect of environment and the evolutionary steps between cores and stars
- CCAT will be the exemplary facility for this type of study, offering improved angular resolution, larger arrays and coverage, and multiple wavelengths to fit dust temperature distribution directly
- BOLOCAM: Enoch 2005 (Perseus), Young 2006 (Ophiuchus)
Debris Disks with the CCAT

- Debris disks, a.k.a. “Vega phenomenon”, a.k.a. “extra-zodiacal dust”:
 - solid particles surrounding main sequence stars, especially youngish ones (10-100 Myr), after the gas has been absorbed into giant planets or expelled
 - product of collisional grinding of planetesimals in Kuiper belts
 - probably episodic in nature
 - tracer of orbital dynamics (analogous to Saturn’s rings)

- CCAT niches
 - high-quality images of statistical sample of nearby disk systems
 - surveys for undiscovered cold disks (T < 40 K) around nearby stars
 - important data points on spectral energy distribution
 - characteristics of particles ⇒ evolutionary clues?
 - much better measurement of mass than is possible with scattered light images
 - unbiased surveys for disks in stellar clusters

β Pictoris: debris disk discovery image
Smith & Terrile (1984)
Debris Disks

Image of Fomalhaut debris disk acquired at 350 µm with the CSO/SHARC II (Marsh et al. 2005, ApJ, 620, L47). Left: The observed image which has 10" resolution and shows a complete ring of debris around the star. Right: A resolution enhanced image with 3" resolution. CCAT will have this resolution intrinsically, with the capability to achieve ~1" resolution through image enhancement techniques. From the CSO image, we can already infer the presence of a planet due to the asymmetry of the ring. CCAT imaging should show substructure which will pinpoint the location of the planet. The vertical bars in each image are 40" in length.
CCAT Science – other topics

- Kuiper belt objects (KBO) - solar system formation
 - Determine masses and albedos
 - See Bertoldi et al 2006, Nature, UB313/Eris
- Dark energy: $w(z)$ from galaxy clusters, SZ effect
 - Sunil Golwala’s DETF “white paper”
 - Complement 1'-2' SZ surveys from ACT, APEX, SPT, …
 - Higher angular resolution: find lower mass clusters, test survey completeness at low mass, check for submm galaxy contamination, cluster morphology effects, etc.
- THz spectroscopy of the ISM
 - Emphasize 850, 1300, and 1500 GHz windows
Ground State Transitions of Deuterated Molecular Ions

$p\text{-H}_2\text{D}^+ 1_{01} - 0_{00}$ (HIFI: ×)

$\text{o-HD}_2^+ 1_{11} - 0_{00}$ (HIFI: ✓)

Fine Structure

$\text{NII} \ ^3P_1 - \ ^3P_0$
Selected (Key) Facility Drivers

- **Aperture**: 25 m
 - Sensitivity improves as $\propto D^2$ (hence time to a given S/N $\propto D^{-4}$)
 - Confusion limit $\propto D^{-\alpha}$ ($\alpha \approx 2$ and 1.2 at 350 and 850 μm, respectively)

- **Wavelength range**
 - 350 – 1400 μm (200 – 2500 μm goal)
 - High efficiency implies 10 μm rms surface precision

- **Field of view**: 5' x 5' initially, up to 20' across eventually
 - Unchallenged speed for moderate resolution, wide field surveys

- **Chopping and Scanning**
 - Bolometer arrays require signal modulation by chopping or scanning
 - For chopping, this must be done at the secondary ($\sim 1'$ at ~ 1Hz)
 - Scanning requires moderately large accelerations for efficiency ($\sim 0.2^\circ$ sec$^{-2}$)

- **Pointing and Guiding**
 - Spectrographs require placing to a fraction of slit width
 - And guiding to maintain spectrophotometric accuracy
 - \Rightarrow 0.61" and 0.35" pointing and guiding (1D rms)

- **Precipitable Water Vapor**
 - Provide significant observing time at 350 and 450 μm
CCAT and ALMA

- Complementary Instruments
- ALMA
 - Excels at high resolution spectroscopic imaging
 - Inefficient for wide field surveys
- CCAT
 - Designed for wide field continuum surveys
- CCAT can provide ALMA
 - Source discovery for detailed follow up
 - Anchor dish for long baselines (esp. high freq.)
 - Add 14% to point source sensitivity at 350 μm
 - Improve dirty sidelobe levels (9% ⇒ 7%; Holdaway)
 - Zero spacing observations
 - ACA
View of Northern Chile (NASA Space Shuttle)

ESO PR Photo 24b/99 (8 June 1999)

© ESO - ESA - Claude Nicollier
Cerro Chajnantor 5612 m

View SW from ASTE; access road constructed by U. Tokyo
Cerro Chajnantor 5612 m

CCAT equipment overlooking ASTE & NANTEN2 @ 4800 m
Cerro Chajnantor 5612 m

CCAT equipment: weather station and 350 µm tipper
350 μm Transparency

- Two Tippers: CCAT & CBI
- Side-by-Side: Same Values
- Better Transparency at CCAT
- Less Water Vapor at
 - $\tau_{off} \approx 0.5$
 - Slope \propto PVW
 - $\text{PWV(CCAT)} \leq 70\% \text{ PWV(CBI)}$

![Graph showing approximate water vapor column versus apparent zenith optical depth.](image-url)
Cerro Chajnantor 5612 m
CCAT Requirements

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Goal</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength</td>
<td>350 – 1400</td>
<td>200 – 2500 μm</td>
</tr>
<tr>
<td>Aperture</td>
<td>25 m</td>
<td></td>
</tr>
<tr>
<td>Field of view</td>
<td>10'</td>
<td>20'</td>
</tr>
<tr>
<td>Half WFE</td>
<td>< 12.5 μm</td>
<td>< 9.5 μm rms</td>
</tr>
<tr>
<td>Site condns.</td>
<td>< 1.0 mm</td>
<td>< 0.7 mm median pwv</td>
</tr>
<tr>
<td>Polarization</td>
<td>0.2%</td>
<td>0.05% after cal.</td>
</tr>
<tr>
<td>Emissivity</td>
<td><10% @ 300 μm</td>
<td>< 5% @ >800 μm</td>
</tr>
<tr>
<td></td>
<td><20% @ 200 μm</td>
<td></td>
</tr>
</tbody>
</table>
Pointing and Scanning

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Goal</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pntg, blind</td>
<td>2"</td>
<td>0.5" rms</td>
</tr>
<tr>
<td>Pntg, offset</td>
<td>0.3"</td>
<td>0.2" within 1°</td>
</tr>
<tr>
<td>Pntg, repeat.</td>
<td>0.3"</td>
<td>0.2" rms, 1 hour</td>
</tr>
<tr>
<td>Scanning rate</td>
<td>0.2° s(^{-1})</td>
<td>1° s(^{-1}) slow/fast</td>
</tr>
<tr>
<td>Scan. accel.</td>
<td>0.4° s(^{-2})</td>
<td>2° s(^{-2}) short/long (\lambda)</td>
</tr>
<tr>
<td>Pointing knowledge</td>
<td>0.2"</td>
<td>0.1" rms</td>
</tr>
<tr>
<td>M2 nutation</td>
<td>±2.5° @ 1 Hz</td>
<td>azimuth only</td>
</tr>
</tbody>
</table>
Optical Design: German Cortes NAIC

Units in mm
Facility Concept Design
M3 Engineering & Technology

- Summit Facility
- Minimum Size
 - Support Operations
- Oxygen Enrichment
 - Working Areas at Summit

- Base Facility
- Road and Site
Site and Facility Design
Site and Facility Design

Support Facility near San Pedro de Atacama
Dome Design Study
AMEC Dynamic Structures

- Various enclosure types considered
 - Formal trade studies carried out for CCAT, TMT, VLOT, GSMT

 Dome-Shutter Carousel Calotte

- “Calotte” selected as baseline design
 - Structurally More Efficient: Lighter, Stronger, Stiffer
 - Amenable to “Geodesic” Type Structural Design: High Efficiency
 - No Large Clear Spans or Concentrated Loads
 - Completely Balanced in Operation
 - Smaller Power Requirements and Mechanical Stresses
 - Minimum Aperture: Good Wind Protection without Windscreens
Telescope Dome Concept

- 42 m Diameter at Equator
- 30 m Aperture
- Highly Repetitive Rib and Tie Structure
- Two Similar Rotation Stages
- Diameter Keeps secondary 2 m Inside Dome
Shutter Approach

- Rotates Independently or with Dome
- Pneumatic Seal to Dome Surface
- Heated for Ice and Snow Protection
CCAT Mount

- Vertex RSI Dallas (GD)
- Combines approaches from Radio and Optical Telescopes
- Hydrostatic (Az) & Rolling Element (EI) Bearings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pointing</td>
<td>2 arcsec RMS</td>
</tr>
<tr>
<td>Offset Pointing</td>
<td>0.2 arcsec RMS</td>
</tr>
<tr>
<td>Dynamics</td>
<td>0.25 deg/sec</td>
</tr>
<tr>
<td></td>
<td>0.01 deg/sec^2</td>
</tr>
<tr>
<td>Unguided Jitter</td>
<td><0.1 arcsec</td>
</tr>
<tr>
<td>Open Loop Drift</td>
<td>0.1 arcsec/min</td>
</tr>
<tr>
<td>Max Accel.</td>
<td>2 deg/sec^2</td>
</tr>
<tr>
<td>Axis Velocity</td>
<td>1 deg/sec</td>
</tr>
</tbody>
</table>
CCAT Mount

- Vertex RSI Dallas (GD)
- Combines approaches from Radio and Optical Telescopes
- Hydrostatic (Az) & Rolling Element (EI) Bearings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pointing</td>
<td>2 arcsec RMS</td>
</tr>
<tr>
<td>Offset Pointing</td>
<td>0.2 arcsec RMS</td>
</tr>
<tr>
<td>Dynamics</td>
<td>0.25 deg/sec</td>
</tr>
<tr>
<td></td>
<td>0.01 deg/sec²</td>
</tr>
<tr>
<td>Unguided Jitter</td>
<td><0.1 arcsec</td>
</tr>
<tr>
<td>Open Loop Drift</td>
<td>0.1 arcsec/min</td>
</tr>
<tr>
<td>Max Accel.</td>
<td>2 deg/sec²</td>
</tr>
<tr>
<td>Axis Velocity</td>
<td>1 deg/sec</td>
</tr>
</tbody>
</table>
Primary Mirror Concept

- Steel Truss: ~5x Lower Cost than CFRP
Primary Mirror Concept

- Steel Truss: ~5x Lower Cost than CFRP
- Commercial Actuators Support Axial and Lateral Loads
- 7 Ring Panel Layout
- 7 Sets of Identical Panels
- Total ~ 210 Panels @ ~1.7 m Major Dim.
Primary Mirror

- Two Current Panel Approaches Considered
 - Replicated CFRP/Al Sandwich (CMA)
 - Precision Molded Lightweight Borosilicate (ITT)
- Panels Kinematically Supported on 3 Points by Bipod Flexures
- \(\sim 8 \text{ kg m}^{-2} \) Areal Density
Primary Mirror

- Two Current Panel Approaches Considered
 - Replicated CFRP/Al Sandwich (CMA)
 - Precision Molded Lightweight Borosilicate (ITT)
- Panels Kinematically Supported on 3 Points by Bipod Flexures
- ~8 kg m$^{-2}$ Areal Density
- ~5 μm rms Panel Figure Total Error
Primary Mirror Truss

- Bolted Truss Preferred
 - Easily Test Assembled, Disassembled, Shipped
 - Easy On-Site Assembly
 - Top Surface Precision Results from Component Accuracy

- Ground Assembled in Modules & Lifted via Crane
Mero Bolted Truss

CFRP and Aluminum
Primary Mirror Truss Concept Design

- Funded by JPL
- Stutzki Engr.
- Objective: First Order Design to Assess Deformation and Modes
- Provide Basis for Initial Estimates of Cost
- Identify any Significant Risks of Cost or Performance
- Discussed with Mero Structures, Wurzburg, Germany
Primary Mirror Truss Concept Design

- Funded by JPL
- Stutzki Engr.
- Objective: First Order Design to Assess Deformation and Modes
- Provide Basis for Initial Estimates of Cost
- Identify any Significant Risks of Cost or Performance
- Discussed with Mero Structures, Wurzburg, Germany
Primary Mirror Truss Concept Design

- Funded by JPL
- Stutzki Engr.
- Objective: First Order Design to Assess Deformation and Modes
- Provide Basis for Initial Estimates of Cost
- Identify any Significant Risks of Cost or Performance
- Discussed with Mero Structures, Wurzburg, Germany
Primary Mirror Truss Concept Design

- Funded by JPL
- Stutzki Engr.
- Objective: First Order Design to Assess Deformation and Modes
- Provide Basis for Initial Estimates of Cost
- Identify any Significant Risks of Cost or Performance
- Discussed with Mero Structures, Wurzburg, Germany
Panel Alignment and Control

- **Edge Sensors: Baseline Solution**
 - Fogale Nanotech (SALT)
 - Blue Line Engineering (HET)
 - Commercial Solutions…~$1000-1500/sensor
 - TMT Developing Mark II Keck Edge Sensor

- **Possible Edge Sensor Shortcomings**
 - Error Magnification of Low Spatial Order Modes of Primary Mirror
 - Dihedral Angle Helps
 - Supplementary Sensors Under Consideration
 - Laser Distance Measurement (JPL)
 - Hartmann Panel Angle (AOA)
Possible Supplementary Sensors

- Laser Absolute Distance Measuring Interferometry: JPL
 - Sparsely Distributed
 - Measure to M2

- Hartman Type Panel Angle Sensor: AOA
 - Point Source near M2
 - Returns from Small Flats on Segments

- IR Wavefront Sensing Guiding
 - Solves Guiding and Sensing
 - Requires Specular Panels at Operating Wavelength
Segmented Mirror Control Modeling

- D. MacDonald, D. Woody, et al. @ JPL and Caltech
- Model Incorporates
 - Segmentation
 - Sensor Properties
 - Edge Sensor Distribution
 - Error Propagation
 - Control Law
Alignment Calibration

- Initial Panel Alignment
 - Optomechanical
 - Photogrammetry
- Submm Interferometry
 - Uses Distant Planets
 - Mars, Uranus, & Neptune
 - Three Techniques Proposed
 - Shearing with Single Detector
 - Shearing with Extended FPA
 - Point Diffraction Interferometer
 - Single Detector Used at CSO
 - Arrays Improve Systematics?

G. Serabyn, JPL
Instruments

• Short Wavelength Camera: SWCam
 – 200–620 µm; Mesh Filters on Wheel
 – Direct Illumination; 32,000 pixel; 5' x 5' Field of View
 – NIST SCUBA2 Silicon TES Bolometer Arrays

• Long Wavelength Camera: LWCam
 – 750–2000 µm; Microstrip Filters; Slot Dipole Antennae
 – MKID Bolometers 20' x 20' Field of View
 • Wavelength Dependent FOV

• SCUBA2 (?)
 – Proven First Light Instrument

• Spectrometers
 – Multiobject, direct detection

• Heterodyne Arrays
 – 10^2 pixels @ 650 or 850 GHz
Project Phases and Schedule

- **Feasibility/Concept Design Study**
 - October 2005–January 2006
 - Cornell, Caltech, & JPL: Develop Baseline Concept, Assess Feasibility, Initial Cost Estimate

- **Partnership Development Phase**
 - Complete Partnership, Identify & Secure Funding
 - Address Key Technical Issues

- **Technical Development Phase**
 - June 2008–June 2011
 - Detailed Design, Manufacture, Integration

- **Commissioning Phase**
 - June 2011–June 2012
 - Optimize Performance & Handover to Operations
Project Phases and Schedule

• Feasibility/Concept Design Study
 – Cornell, Caltech, & JPL: Develop Baseline Concept, Assess Feasibility, Initial Cost Estimate

“*The CCAT will revolutionize Astronomy in the submm/FIR band and enable significant progress in unraveling the cosmic origin of stars, planets and galaxies. CCAT is very timely and cannot wait.*”

From CCAT Design Review Committee Report (Robert W. Wilson, Chair)

• Detailed Design, Manufacture, Integration

• Commissioning Phase
 – June 2011–June 2012
 – Optimize Performance & Handover to Operations
Partnership Status

- **Caltech** 20% +?
 - Proposal Submitted to Moore Foundation
 - Additional JPL involvement, i.e., instruments?

- **Cornell University** 25-30%
 - Donor Identified for $10 M
 - University and NY State Support for Remainder

- **University of Colorado Boulder** 5-10%
 - Prospective Donor Identified for Major Share

- **UK (ATC/ROE)** 25%
 - Statement of Intent Submitted to PPARC

- **Canada (Us. of BC & Waterloo)** 20%
 - Canadian Government Funding

Interim Consortium Agreement: Signature Pending Full Project Agreement by 2008 January
Project Organization

- Final Structure to be Decided by Partners
 - Observing Shares, Investment Levels, Operations Obligations
- Non Profit Corporation (NY State)
 - Partners Share Ownership, Rely on Cornell for Admin. Support
 - Legal Presence in Chile, Obtain Necessary Status and Site
 - Project Management Reports to Board
- Technical Project Team
 - Oversee Technical Design, Industrial Fabrication, & Construction
 - Lead Commissioning Effort in Chile with Operations Team
- Instruments
 - Develop at Institutions (SWCam @ Cornell, LWCam @ Caltech)
 - Leverage Specialized Talent and Facilities, i.e., MDL @ JPL
CCAT Operations

- Observations Mostly Remote or Service Mode
- Operations Base near San Pedro
 - Reduced Staff at Telescope, Daily Commute
 - Most Chilean hires, 20-25 Operations Staff
 - Weekly Commuting (Turno)
 - Other Telescopes in Chile Provide Examples
- Annual Cost $5M
 - Telescope Operations Only, Science Analysis Additional
 - NSF Support? Redirect from CSO; Community Access
 - Other Partners Provide Proportional Shares
Next Steps

- Additional Consortium Development
- Interim Consortium Agreement: Signature Pending
- Engineering Work on Critical Systems
- Focus on:
 - Change from f/0.6 to f/0.4 Primary...More Compact Telescope
 - System Analysis of Optimal Segmentation, Sensor Deployment, Control Law for Mirror and Telescope Alignment (JPL Modeling)
 - Additional Investigation of Calibration WFS, Supplemental Panel Position Sensing, Edge Sensing
 - Further Development of Science Instrument Concepts
- Full Project Agreements by Early 2008
Cerro Chajnantor 5612 m
Expected flux for several low mass (and low temperature) cold cloud cores located at 140 pc. This survey is limited by the field of view of the telescope and how fast we can move the telescope.
ULIRG Clustering:
Spitzer/IRAC - B2, B3

An example of modern cosmological hydrodynamic simulations (Nagamine et al 2005). Each panel has a comoving size of 143 Mpc on a side, and the star forming galaxies with instantaneous star formation rate greater than 100 M$_\odot$/yr at each epoch are indicated with white circles (figure provided by Duncan Farrah).
How did the first galaxies form?

- CCAT will detect hundreds of thousands of primeval galaxies from the era of galaxy formation and assembly \((z = 2 - 4\) or about 10-12 billion years ago) providing for the first time a complete picture of this process.
- CCAT will probe the earliest bursts of dusty star formation as far back as \(z \sim 10\) (less than 500 million years after the Big Bang or when the Universe was \(\sim 4\%\) of its current age).
- More detail: presentations by Robson, Soifer, Borys

Estimated redshift distribution of galaxies that will be detected by CCAT at 1 mJy for 200 (blue), 350 (green), and 500 GHz (red).
Predicted 350 μm submm flux for TNOs assuming the standard thermal model, i.e. non-rotating. Bodies with radii of 150 km, 250 km, and 500 km are shown with the solid, dotted, and dashed lines, respectively. Curves assume a geometric albedo $p = 10\%$, phase integral $q = 0.45$, bolometric and submillimeter emissivity $\varepsilon = \varepsilon_v = 0.9$. The horizontal lines show the CCAT 5-sigma detection limits for one hour and two hours of on-source observation.
TNO sub-mm advantage

Predicted 350 um flux for Trans-Neptunian Objects (TNOs) with 10% albedo ($m_R=22$, solid and $m_R=23$, dotted) or 4% albedo ($m_R=23$, solid and $m_R=24$, dotted). Horizontal lines show 5-sigma detection in 1 and 2 hours, respectively for CCAT.
Rate at which sky can be mapped ($\Omega_{\text{array}}/\text{NEFD}^2$). This is a measure of how quickly sky can be covered to a given flux level provided that the confusion limit is not reached. Calculation assumes 150 square arcmin with 2 pixels/res. element with max. 20 km/s. For JCMT, APEX, Herschel, FoV is 8' FoV for JCMT & LMT and 12' FoV for APEX.
Galaxy Detection Rate at Confusion Limit

Rate at which galaxies are detected down to the confusion limit for each telescope. Note that the confusion limit varies for each telescope (and with wavelength). Calculation assumes 150x150 arcsec, with 2 pixel per beam element with max 20° FoV for CCAT, 60° × 60° FoV for APEX, 70° × 70° FoV for JCMT & LMT and 4° FoV for Herschel.
Confusion limits for various telescopes assume confusion at 30-beams/source. Note that the confusion limit for CCAT is 15 times fainter than Apex and Herschel, respectively.
CCAT Science Steering Committee Charter

- Establish top-level science requirements
 - Determine and document major science themes
- Flow down science requirements to facility requirements
 - Telescope, instrumentation, site selection criteria, operations, etc.

- Outputs
 - Science document
 - Write-ups on major science themes using uniform format (science goals, motivation/background, techniques, CCAT requirements, uniqueness and synergies)
 - Requirements document
 - Specifies requirements for aperture, image quality, pointing, tracking, scanning, chopping, etc.
Time Available to Observe

<table>
<thead>
<tr>
<th>Band</th>
<th>Time to CL</th>
<th>Ref. PWV</th>
<th>Sairecabur (5500 m)</th>
<th>ALMA (5050 m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[μm]</td>
<td>[GHz]</td>
<td>[hr]</td>
<td>[mm]</td>
</tr>
<tr>
<td></td>
<td>[μm]</td>
<td>[GHz]</td>
<td>[hr]</td>
<td>[mm]</td>
</tr>
<tr>
<td>200</td>
<td>1500</td>
<td>1248</td>
<td>0.26</td>
<td>281</td>
</tr>
<tr>
<td>350</td>
<td>857</td>
<td>0.86</td>
<td>0.47</td>
<td>1936</td>
</tr>
<tr>
<td>620</td>
<td>484</td>
<td>1.14</td>
<td>0.64</td>
<td>716</td>
</tr>
<tr>
<td>740</td>
<td>405</td>
<td>0.43</td>
<td>0.75</td>
<td>639</td>
</tr>
<tr>
<td>865</td>
<td>347</td>
<td>0.28</td>
<td>0.86</td>
<td>1223</td>
</tr>
<tr>
<td>1400</td>
<td>214</td>
<td>0.30</td>
<td>1.00</td>
<td>1517</td>
</tr>
</tbody>
</table>
| | | | | | Time (PWV < 1.1 mm) | 6312 | 72 | 5084 | 58 |}

Number of hours/year (round the clock) available for observing at a given λ (PWV) for Sairecabur (5500 m) vs. the ALMA region (5050 m). "CL fields" is the number of fields that can be observed to the confusion limit over a year. The "Total Time" is the sum of available hours and represents all time (day or night) with PWV < 1.1 mm. Because observations at some wavelengths require similar settings, i.e., 350 μm and 450 μm, they share a common environment that at 860 μm. Observations are done when PWV < 1.1 mm.
Time to Complete Programs

<table>
<thead>
<tr>
<th>Band</th>
<th>PWV</th>
<th>Time Available</th>
<th>Science Program Time</th>
<th>Time to Complete</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>λ</td>
<td>ν</td>
<td>Sairecabur (5500 m)</td>
<td>ALMA (5050 m)</td>
</tr>
<tr>
<td></td>
<td>(μm)</td>
<td>(GHz)</td>
<td>(mm)</td>
<td>(hr yr⁻¹)</td>
</tr>
<tr>
<td>200</td>
<td>0.26</td>
<td>281</td>
<td>84</td>
<td>204</td>
</tr>
<tr>
<td>350</td>
<td>0.47</td>
<td>1936</td>
<td>1084</td>
<td>4881</td>
</tr>
<tr>
<td>620</td>
<td>0.64</td>
<td>716</td>
<td>723</td>
<td>5832</td>
</tr>
<tr>
<td>740</td>
<td>0.75</td>
<td>639</td>
<td>690</td>
<td>256</td>
</tr>
<tr>
<td>865</td>
<td>0.86</td>
<td>1223</td>
<td>1205</td>
<td>1128</td>
</tr>
<tr>
<td>1400</td>
<td>1.00</td>
<td>1517</td>
<td>1299</td>
<td>350</td>
</tr>
</tbody>
</table>

“Science program time” is the total time to perform the baseline science for camera observations only – this does not include spectroscopic follow-up. This is the on-sky integration time needed according to best estimates of the sensitivity and does not include observing overhead or other inefficiencies. With overheads and “real” sensitivities, the times are likely to increase by a factor of two.
<table>
<thead>
<tr>
<th>PWV</th>
<th>Observing Bands</th>
<th>Distant Gals</th>
<th>S-Z Effect</th>
<th>Nearby Gals</th>
<th>Cold Cores Survey</th>
<th>C-S Disks</th>
<th>KBOs</th>
<th>Total Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.30</td>
<td>200</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>199</td>
<td>0</td>
<td>204</td>
</tr>
<tr>
<td>0.40</td>
<td>350</td>
<td>2312</td>
<td>0</td>
<td>181</td>
<td>885</td>
<td>749</td>
<td>753</td>
<td>4881</td>
</tr>
<tr>
<td>0.50</td>
<td>450, 620</td>
<td>2173</td>
<td>3400</td>
<td>260</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5832</td>
</tr>
<tr>
<td>0.70</td>
<td>740</td>
<td>256</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>256</td>
</tr>
<tr>
<td>1.00</td>
<td>865 - 1200</td>
<td>121</td>
<td>460</td>
<td>82</td>
<td>221</td>
<td>243</td>
<td>0</td>
<td>1128</td>
</tr>
<tr>
<td>1.50</td>
<td>> 1400</td>
<td>0</td>
<td>350</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>350</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>4862</td>
<td>4210</td>
<td>529</td>
<td>1106</td>
<td>1192</td>
<td>753</td>
<td>12652</td>
</tr>
</tbody>
</table>

“Science program time” is the total time to perform the baseline science for camera observations only – this does not include spectroscopic follow-up. This is the on-sky integration time needed according to best estimates of the sensitivity and does not include observing overhead or other inefficiencies. With overheads and “real” sensitivities, times are likely to increase by a factor of two.
<table>
<thead>
<tr>
<th>Facility</th>
<th>Lambda (microns)</th>
<th>Freq. (GHz)</th>
<th>Beam Diam. (arcsec)</th>
<th>Array FoV (arcmin)</th>
<th>f_ν (mJy)</th>
<th>Conf. Limit (mJy)</th>
<th>Time to Conf. Limit (sec)</th>
<th>Conf. Limit src density (#/sq-deg)</th>
<th>Survey Speed (arcmin/ hr/mJy^2)</th>
<th>Gals/hr to CL</th>
<th>Gals on Array f >= CL</th>
<th>Gals on Array f >= f_ν</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCAT</td>
<td>350</td>
<td>857</td>
<td>3.81</td>
<td>4.76</td>
<td>1.25</td>
<td>1.29</td>
<td>3384</td>
<td>37856</td>
<td>14</td>
<td>251</td>
<td>236</td>
<td>243</td>
</tr>
<tr>
<td></td>
<td>450</td>
<td>667</td>
<td>4.90</td>
<td>4.75</td>
<td>1.18</td>
<td>1.45</td>
<td>2392</td>
<td>22901</td>
<td>16</td>
<td>213</td>
<td>142</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>865</td>
<td>347</td>
<td>9.42</td>
<td>19.6</td>
<td>0.57</td>
<td>0.92</td>
<td>1357</td>
<td>6198</td>
<td>1202</td>
<td>1772</td>
<td>668</td>
<td>1384</td>
</tr>
<tr>
<td></td>
<td>1100</td>
<td>273</td>
<td>11.2</td>
<td>20.0</td>
<td>0.19</td>
<td>0.67</td>
<td>290</td>
<td>3833</td>
<td>11030</td>
<td>5325</td>
<td>429</td>
<td>2950</td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>150</td>
<td>21.8</td>
<td>19.6</td>
<td>0.20</td>
<td>0.20</td>
<td>3730</td>
<td>1159</td>
<td>9684</td>
<td>134</td>
<td>139</td>
<td>134</td>
</tr>
<tr>
<td>APEX</td>
<td>350</td>
<td>857</td>
<td>7.94</td>
<td>9.93</td>
<td>7.03</td>
<td>4.27</td>
<td>9767</td>
<td>8722</td>
<td>2.0</td>
<td>89</td>
<td>242</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>450</td>
<td>667</td>
<td>10.2</td>
<td>12.8</td>
<td>6.25</td>
<td>4.09</td>
<td>8413</td>
<td>5276</td>
<td>4.2</td>
<td>106</td>
<td>249</td>
<td>127</td>
</tr>
<tr>
<td></td>
<td>865</td>
<td>347</td>
<td>19.6</td>
<td>19.8</td>
<td>2.27</td>
<td>2.06</td>
<td>4375</td>
<td>1428</td>
<td>76</td>
<td>144</td>
<td>175</td>
<td>146</td>
</tr>
<tr>
<td></td>
<td>1100</td>
<td>273</td>
<td>25.0</td>
<td>19.8</td>
<td>0.78</td>
<td>1.41</td>
<td>1100</td>
<td>883</td>
<td>647</td>
<td>354</td>
<td>108</td>
<td>325</td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>150</td>
<td>45.4</td>
<td>19.9</td>
<td>0.85</td>
<td>0.39</td>
<td>17217</td>
<td>267</td>
<td>549</td>
<td>7.1</td>
<td>34.2</td>
<td>5.2</td>
</tr>
<tr>
<td>JCMT</td>
<td>450</td>
<td>667</td>
<td>8.17</td>
<td>7.94</td>
<td>8.55</td>
<td>3.05</td>
<td>28325</td>
<td>8244</td>
<td>0.9</td>
<td>19</td>
<td>149</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>865</td>
<td>347</td>
<td>15.7</td>
<td>7.96</td>
<td>1.83</td>
<td>1.63</td>
<td>4578</td>
<td>2231</td>
<td>19</td>
<td>34</td>
<td>43</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>1100</td>
<td>273</td>
<td>20.0</td>
<td>7.99</td>
<td>0.61</td>
<td>1.13</td>
<td>1060</td>
<td>1380</td>
<td>169</td>
<td>91</td>
<td>27</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>150</td>
<td>36.3</td>
<td>7.87</td>
<td>0.61</td>
<td>0.32</td>
<td>13349</td>
<td>417</td>
<td>166</td>
<td>2.2</td>
<td>8.3</td>
<td>1.8</td>
</tr>
<tr>
<td>CSO</td>
<td>350</td>
<td>857</td>
<td>9.16</td>
<td>11.5</td>
<td>19.0</td>
<td>5.21</td>
<td>47733</td>
<td>6551</td>
<td>0.4</td>
<td>18</td>
<td>243</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>450</td>
<td>667</td>
<td>11.8</td>
<td>14.7</td>
<td>12.8</td>
<td>4.90</td>
<td>24705</td>
<td>3963</td>
<td>1.3</td>
<td>36</td>
<td>250</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>865</td>
<td>347</td>
<td>22.6</td>
<td>20.0</td>
<td>3.73</td>
<td>2.39</td>
<td>8768</td>
<td>1073</td>
<td>29</td>
<td>56</td>
<td>135</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>1100</td>
<td>273</td>
<td>28.8</td>
<td>19.9</td>
<td>1.24</td>
<td>1.62</td>
<td>2111</td>
<td>663</td>
<td>258</td>
<td>148</td>
<td>83</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>150</td>
<td>52.4</td>
<td>19.6</td>
<td>1.26</td>
<td>0.44</td>
<td>29283</td>
<td>201</td>
<td>243</td>
<td>3.1</td>
<td>25</td>
<td>1.8</td>
</tr>
<tr>
<td>LMT</td>
<td>865</td>
<td>347</td>
<td>4.71</td>
<td>8.01</td>
<td>0.49</td>
<td>0.38</td>
<td>6173</td>
<td>24791</td>
<td>266</td>
<td>235</td>
<td>403</td>
<td>262</td>
</tr>
<tr>
<td></td>
<td>1100</td>
<td>273</td>
<td>5.99</td>
<td>7.99</td>
<td>0.11</td>
<td>0.30</td>
<td>465</td>
<td>15330</td>
<td>5482</td>
<td>1914</td>
<td>247</td>
<td>974</td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>150</td>
<td>10.9</td>
<td>7.99</td>
<td>0.065</td>
<td>0.06</td>
<td>1651</td>
<td>4637</td>
<td>15072</td>
<td>181</td>
<td>83</td>
<td>155</td>
</tr>
<tr>
<td>Herschel</td>
<td>200</td>
<td>1500</td>
<td>15.6</td>
<td>3.89</td>
<td>1.42</td>
<td>15.9</td>
<td>29</td>
<td>2272</td>
<td>7.5</td>
<td>1212</td>
<td>9.6</td>
<td>174</td>
</tr>
<tr>
<td></td>
<td>350</td>
<td>857</td>
<td>27.2</td>
<td>4.08</td>
<td>1.50</td>
<td>19.6</td>
<td>21</td>
<td>742</td>
<td>7.4</td>
<td>588</td>
<td>3.5</td>
<td>148</td>
</tr>
<tr>
<td></td>
<td>450</td>
<td>667</td>
<td>35.9</td>
<td>4.08</td>
<td>1.71</td>
<td>17.1</td>
<td>35</td>
<td>449</td>
<td>5.7</td>
<td>206</td>
<td>2.1</td>
<td>86</td>
</tr>
</tbody>
</table>
Sub-mm galaxy counts vs. flux density (number of galaxies with flux greater than S vs. S) for different wavelengths (e.g., 200 μm, 350 μm, etc.). Crosses show 30 (lower) and 10 (upper) confusion limits.
Debris disks trace the underlying distribution of planets.

- The distribution of dust indicates where planets are and what their mass is.
 Theoretical simulations:

 Ozernoy et al. (2000)

- We are currently in a situation where better images are needed to resolve structures in more than a handful of sources.
- The nearby debris disk systems to be imaged with CCAT are the ones which have the best chance for direct detection of both the dust and the planets (the latter with other facilities).
Searching for Debris Disks

Sensitivity of various telescopes to tenuous disk emission. Although typical far-infrared-selected disks have characteristic temperatures of 80 K, selection is biased towards warmer disks. Disks with temperatures as low as 40 K are known (Liu et al. 2004, ApJ, 608, 526; Chen et al. 2005, ApJ, accepted), and especially around lower mass stars and brown dwarfs we can expect dust of yet lower temperatures to be discovered.